organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Arctigenin: a lignan from Arctium lappa

Haiyan Gao, Guanglei Li, Junhe Zhang and Jie Zeng*

School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China Correspondence e-mail: j_zeng@yahoo.cn

Received 2 July 2008; accepted 13 July 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.079; data-to-parameter ratio = 10.3.

The title compound {systematic name: (3R-trans)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]-4,5-dihydrofuran-2(3*H*)-one}, C₂₁H₂₄O₆, has a dibenzylbutyrolactone skeleton. The two aromatic rings are inclined at a dihedral angle of 68.75 (7)° with respect to each other. The lactone ring adopts an envelope conformation. A series of O-H···O and C-H···O hydrogen bonds contribute to the stabilization of the crystal packing. The absolute configuration was assigned on the basis of the published literature.

Related literature

For related literature, see: Awale *et al.* (2006). For a similar structure, see: Bruno-Colmenárez *et al.* (2007).

Experimental

Crystal data

$C_{21}H_{24}O_6$	b = 10.065 (2) Å
$M_r = 372.40$	c = 19.915 (4) Å
Orthorhombic, $P2_12_12_1$	V = 1901.2 (7) Å ³
a = 9.4845 (19) Å	Z = 4

Mo Kα radiation	
$\mu = 0.10 \text{ mm}^{-1}$	

Data collection

Rigaku Saturn CCD area-detector	13910 measured reflections
diffractometer	2581 independent reflections
Absorption correction: multi-scan	2449 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.037$
2005)	
$T_{\min} = 0.987, \ T_{\max} = 0.991$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.062581 reflections 251 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 05 - H5 \cdots 02^{i} \\ 05 - H5 \cdots 06 \\ 05 - H5 \cdots 01^{i} \\ C3 - H3 \cdots 05^{ii} \\ C14 - H14A \cdots 04^{iii} \\ C14 - H14B \cdots 05^{iv} \\ C20 - H20 \cdots 04^{iii} \end{array}$	0.90 (2) 0.90 (2) 0.90 (2) 0.95 0.99 0.99 0.95	2.04 (2) 2.22 (2) 2.58 (2) 2.34 2.86 2.42 2.53	2.8280 (17) 2.6799 (18) 3.2406 (18) 3.278 (2) 3.687 (2) 3.373 (2) 3.446 (2)	146 (2) 111.7 (17) 130.8 (16) 168 142 162 162

T = 113 (2) K $0.14 \times 0.12 \times 0.10 \text{ mm}$

refinement $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.15 \text{ e} \text{ Å}^{-3}$

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2739).

References

Awale, S., Lu, J., Kalaumi, S. K., Kurashima, Y., Tezuka, Y., Kadaota, S. & Esumi, H. (2006). *Cancer Res.* 66, 1751–1757.

Bruno-Colmenárez, J., Usubillaga, A., Khouri, N. & Díaz de Delgado, G. (2007). Acta Cryst. E63, o2046-o2047.

Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1538 [doi:10.1107/S1600536808021752]

Arctigenin: a lignan from Arctium lappa

H. Gao, G. Li, J. Zhang and J. Zeng

Comment

Arctigenin has been identified as an antitumor agent with the ability to eliminate the tolerance of cancer cells to nutrient strarvation (Awale *et al.*, 2006).

The title compound has a dibenzylbutyrolactone skeleton (Fig. 1). The two aromatic rings have a dihedral angle of $68.75 (7)^{\circ}$. The lactone ring adopts an envelope conformation. A series of O—H…O and C—H…O hydrogen bonds contribute to the stabilization of the crystal packing (Table 1).

Experimental

Arctigenin was isolated from Chinese medicine Arctium lappa. Crystal blocks were obtained by natural evaporation of a methanolic solution.

Refinement

In the absence of anomalous scatterers Friedel pairs were merged. The absolute configuration was set according to the literature (Awale *et al.*, 2006). The O-bound H atom was located in a difference map and freely refined. All other H atoms were positioned geometrically and refined as riding atoms, with $U(H) = 1.2 U_{eq}(CH \text{ and } CH_2)$ and C—H ranging from 0.95–1.0Å or $U(H) = 1.5 U_{eq}(CH_3)$ and C_{methyl}—H =0.99 Å. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids.

 $(3R-trans)-4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-\ 3-methoxyphenyl)methyl]-4,5-dihydrofuran-2(3H)-one$

Crystal data

 $C_{21}H_{24}O_6$ $M_r = 372.40$ Orthorhombic, $P2_12_12_1$ $F_{000} = 792$ $D_x = 1.301 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2ac 2ab a = 9.4845 (19) Å b = 10.065 (2) Å c = 19.915 (4) Å V = 1901.2 (7) Å³ Z = 4

Data collection

2581 independent reflections
2449 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$
$\theta_{\text{max}} = 27.8^{\circ}$
$\theta_{\min} = 2.1^{\circ}$
$h = -12 \rightarrow 12$
$k = -11 \rightarrow 13$
$l = -26 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.1518P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
2581 reflections	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
251 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.032 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 5995 reflections

 $\theta = 2.3 - 27.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 113 (2) K

Block, colourless

 $0.14 \times 0.12 \times 0.10 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.07380 (13)	0.28900 (13)	0.73971 (6)	0.0287 (3)
O2	0.23820 (12)	0.17843 (12)	0.82576 (5)	0.0228 (3)
O3	0.38552 (14)	0.79457 (13)	0.92594 (6)	0.0329 (3)
O4	0.34335 (15)	0.69713 (14)	1.02429 (6)	0.0362 (3)
05	0.96166 (13)	0.15373 (12)	0.87738 (6)	0.0226 (3)
Н5	1.036 (2)	0.195 (2)	0.8592 (10)	0.034*
O6	1.04322 (12)	0.40766 (12)	0.88872 (6)	0.0241 (3)
C1	0.44649 (17)	0.48348 (17)	0.79244 (7)	0.0196 (3)
C2	0.35798 (18)	0.53926 (18)	0.74441 (8)	0.0230 (3)
H2	0.3827	0.6219	0.7246	0.028*
C3	0.23339 (18)	0.47622 (18)	0.72471 (8)	0.0247 (4)
H3	0.1747	0.5159	0.6917	0.030*
C4	0.19554 (17)	0.35649 (18)	0.75310 (8)	0.0226 (3)
C5	0.28519 (17)	0.29699 (17)	0.80056 (7)	0.0196 (3)
C6	0.40879 (17)	0.35955 (17)	0.81937 (7)	0.0192 (3)
H6	0.4693	0.3180	0.8511	0.023*
C7	-0.0319 (2)	0.3594 (2)	0.70329 (11)	0.0412 (5)
H7A	-0.0003	0.3730	0.6569	0.062*
H7B	-0.0485	0.4458	0.7246	0.062*
H7C	-0.1196	0.3079	0.7033	0.062*
C8	0.32263 (19)	0.11735 (19)	0.87673 (9)	0.0276 (4)
H8A	0.3305	0.1774	0.9153	0.041*
H8B	0.4168	0.0988	0.8588	0.041*
H8C	0.2784	0.0340	0.8910	0.041*
C9	0.57710 (16)	0.55340 (17)	0.81719 (7)	0.0209 (3)
H9A	0.6165	0.6068	0.7799	0.025*
H9B	0.6482	0.4855	0.8294	0.025*
C10	0.55425 (17)	0.64553 (16)	0.87818 (8)	0.0213 (3)
H10	0.6479	0.6827	0.8916	0.026*
C11	0.4557 (2)	0.76166 (18)	0.86314 (9)	0.0287 (4)
H11A	0.5100	0.8389	0.8464	0.034*
H11B	0.3856	0.7361	0.8286	0.034*
C12	0.39834 (18)	0.69247 (18)	0.96988 (8)	0.0257 (4)
C13	0.48662 (16)	0.58224 (16)	0.94058 (8)	0.0192 (3)
H13	0.4229	0.5086	0.9259	0.023*
C14	0.58852 (17)	0.52865 (17)	0.99399 (7)	0.0211 (3)
H14A	0.6435	0.6035	1.0129	0.025*
H14B	0.5334	0.4884	1.0310	0.025*
C15	0.68864 (17)	0.42650 (16)	0.96613 (8)	0.0194 (3)
C16	0.65324 (16)	0.29296 (17)	0.96147 (7)	0.0205 (3)
H16	0.5651	0.2633	0.9785	0.025*
C17	0.74541 (16)	0.20166 (17)	0.93208 (7)	0.0206 (3)

	Fractional atomic coordinates d	and isotropic or	equivalent isotropic	displacement	parameters (.	(A^2)
--	---------------------------------	------------------	----------------------	--------------	---------------	---------

supplementary materials

H17	0.7201	0.1105	0.9295	0.025*
C18	0.87370 (16)	0.24419 (16)	0.90675 (7)	0.0188 (3)
C19	0.91196 (16)	0.37751 (17)	0.91323 (7)	0.0187 (3)
C20	0.82073 (16)	0.46753 (17)	0.94260 (7)	0.0192 (3)
H20	0.8479	0.5580	0.9469	0.023*
C21	1.08409 (19)	0.54337 (18)	0.89079 (10)	0.0329 (4)
H21A	1.0905	0.5726	0.9376	0.049*
H21B	1.0139	0.5973	0.8671	0.049*
H21C	1.1761	0.5538	0.8691	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0263 (6)	0.0277 (7)	0.0322 (6)	-0.0037 (6)	-0.0070 (5)	0.0021 (5)
O2	0.0269 (6)	0.0178 (6)	0.0237 (5)	0.0014 (5)	0.0016 (5)	0.0025 (4)
O3	0.0430 (7)	0.0206 (6)	0.0353 (7)	0.0115 (6)	0.0054 (6)	0.0006 (5)
O4	0.0416 (7)	0.0322 (8)	0.0349 (7)	0.0107 (7)	0.0139 (6)	-0.0030 (6)
O5	0.0210 (5)	0.0180 (6)	0.0288 (6)	0.0004 (5)	0.0004 (5)	-0.0031 (5)
O6	0.0187 (5)	0.0194 (6)	0.0342 (6)	-0.0017 (5)	0.0050 (5)	-0.0041 (5)
C1	0.0205 (7)	0.0212 (8)	0.0171 (7)	0.0035 (7)	0.0033 (6)	0.0004 (6)
C2	0.0258 (8)	0.0209 (8)	0.0222 (8)	0.0017 (7)	0.0033 (6)	0.0036 (6)
C3	0.0247 (8)	0.0270 (9)	0.0222 (8)	0.0030 (7)	-0.0030 (6)	0.0041 (7)
C4	0.0225 (7)	0.0241 (9)	0.0214 (7)	0.0008 (7)	-0.0002 (6)	-0.0028 (6)
C5	0.0250 (8)	0.0159 (7)	0.0179 (7)	0.0034 (7)	0.0053 (6)	0.0007 (6)
C6	0.0218 (7)	0.0200 (8)	0.0158 (7)	0.0060 (7)	0.0023 (6)	-0.0002 (6)
C7	0.0310 (10)	0.0340 (11)	0.0584 (12)	-0.0034 (10)	-0.0192 (9)	0.0041 (10)
C8	0.0271 (8)	0.0259 (9)	0.0297 (9)	0.0047 (8)	0.0052 (7)	0.0108 (7)
С9	0.0193 (7)	0.0229 (8)	0.0206 (7)	0.0009 (7)	0.0030 (6)	0.0030 (6)
C10	0.0223 (7)	0.0177 (8)	0.0237 (7)	-0.0003 (7)	0.0015 (6)	0.0014 (6)
C11	0.0358 (9)	0.0193 (8)	0.0308 (9)	0.0049 (8)	0.0032 (7)	0.0029 (7)
C12	0.0250 (8)	0.0215 (8)	0.0307 (8)	0.0035 (7)	0.0022 (7)	-0.0025 (7)
C13	0.0187 (7)	0.0162 (8)	0.0227 (8)	0.0006 (6)	0.0017 (6)	-0.0015 (6)
C14	0.0213 (7)	0.0222 (8)	0.0198 (7)	0.0007 (7)	0.0028 (6)	0.0000 (6)
C15	0.0208 (7)	0.0223 (8)	0.0149 (7)	0.0024 (7)	-0.0018 (6)	0.0008 (6)
C16	0.0192 (7)	0.0220 (8)	0.0204 (7)	-0.0012 (7)	0.0001 (6)	0.0027 (6)
C17	0.0218 (7)	0.0182 (8)	0.0218 (7)	-0.0020(7)	-0.0035 (6)	0.0019 (6)
C18	0.0193 (7)	0.0182 (8)	0.0190 (7)	0.0037 (6)	-0.0036 (6)	-0.0017 (6)
C19	0.0163 (7)	0.0217 (8)	0.0183 (7)	-0.0010 (6)	-0.0018 (6)	0.0009 (6)
C20	0.0204 (7)	0.0186 (8)	0.0188 (7)	-0.0003 (7)	-0.0023 (6)	-0.0009 (6)
C21	0.0260 (9)	0.0208 (9)	0.0519 (11)	-0.0064 (8)	0.0114 (8)	-0.0055 (8)

Geometric parameters (Å, °)

O1—C4	1.366 (2)	C9—C10	1.543 (2)
O1—C7	1.426 (2)	С9—Н9А	0.9900
O2—C5	1.369 (2)	С9—Н9В	0.9900
O2—C8	1.432 (2)	C10-C11	1.526 (2)
O3—C12	1.355 (2)	C10—C13	1.537 (2)
O3—C11	1.455 (2)	C10—H10	1.0000

O4—C12	1.203 (2)	C11—H11A	0.9900
O5—C18	1.3665 (19)	C11—H11B	0.9900
О5—Н5	0.90 (2)	C12—C13	1.507 (2)
O6—C19	1.3712 (19)	C13—C14	1.535 (2)
O6—C21	1.421 (2)	С13—Н13	1.0000
C1—C2	1.391 (2)	C14—C15	1.506 (2)
C1—C6	1.404 (2)	C14—H14A	0.9900
C1—C9	1.508 (2)	C14—H14B	0.9900
C2—C3	1.398 (2)	C15—C16	1.389 (2)
С2—Н2	0.9500	C15—C20	1.400 (2)
C3—C4	1.379 (2)	C16—C17	1.397 (2)
С3—Н3	0.9500	С16—Н16	0.9500
C4—C5	1.405 (2)	C17—C18	1.385 (2)
C5—C6	1.383 (2)	C17—H17	0.9500
С6—Н6	0.9500	C18—C19	1.396 (2)
С7—Н7А	0.9800	C19—C20	1.383 (2)
С7—Н7В	0.9800	C20—H20	0.9500
С7—Н7С	0.9800	C21—H21A	0.9800
C8—H8A	0.9800	C21—H21B	0.9800
C8—H8B	0.9800	C21—H21C	0.9800
C8—H8C	0.9800		
C4—O1—C7	116.50 (15)	С9—С10—Н10	108.1
C5—O2—C8	116.88 (13)	O3—C11—C10	106.62 (13)
C12—O3—C11	109.96 (13)	O3—C11—H11A	110.4
С18—О5—Н5	109.9 (15)	C10-C11-H11A	110.4
C19—O6—C21	116.75 (13)	O3—C11—H11B	110.4
C2—C1—C6	117.88 (16)	C10-C11-H11B	110.4
C2—C1—C9	122.16 (15)	H11A—C11—H11B	108.6
C6—C1—C9	119.94 (14)	O4—C12—O3	120.85 (17)
C1—C2—C3	121.34 (16)	O4—C12—C13	128.17 (17)
C1—C2—H2	119.3	O3—C12—C13	110.98 (13)
C3—C2—H2	119.3	C12—C13—C14	109.88 (13)
C4—C3—C2	120.12 (15)	C12—C13—C10	103.87 (13)
С4—С3—Н3	119.9	C14—C13—C10	116.31 (13)
С2—С3—Н3	119.9	C12—C13—H13	108.8
O1—C4—C3	125.08 (15)	C14—C13—H13	108.8
O1—C4—C5	115.51 (16)	C10—C13—H13	108.8
C3—C4—C5	119.40 (16)	C15-C14-C13	112.45 (12)
O2—C5—C6	125.01 (14)	C15—C14—H14A	109.1
O2—C5—C4	114.90 (15)	C13—C14—H14A	109.1
C6—C5—C4	120.07 (15)	C15—C14—H14B	109.1
C5—C6—C1	121.14 (15)	C13—C14—H14B	109.1
С5—С6—Н6	119.4	H14A—C14—H14B	107.8
С1—С6—Н6	119.4	C16—C15—C20	118.66 (15)
O1—C7—H7A	109.5	C16—C15—C14	122.23 (15)
O1—C7—H7B	109.5	C20—C15—C14	119.10 (15)
H7A—C7—H7B	109.5	C15—C16—C17	120.90 (15)
O1—C7—H7C	109.5	C15—C16—H16	119.6
H7A—C7—H7C	109.5	C17—C16—H16	119.6

supplementary materials

Н7В—С7—Н7С	109.5	C18—C17—C16	119.94 (15)	
O2—C8—H8A	109.5	C18—C17—H17	120.0	
O2—C8—H8B	109.5	C16—C17—H17	120.0	
H8A—C8—H8B	109.5	O5—C18—C17	119.10 (15)	
O2—C8—H8C	109.5	O5—C18—C19	121.42 (15)	
H8A—C8—H8C	109.5	C17—C18—C19	119.46 (15)	
H8B—C8—H8C	109.5	O6—C19—C20	125.01 (15)	
C1—C9—C10	114.99 (13)	O6—C19—C18	114.57 (14)	
С1—С9—Н9А	108.5	C20—C19—C18	120.42 (15)	
С10—С9—Н9А	108.5	C19—C20—C15	120.55 (15)	
С1—С9—Н9В	108.5	С19—С20—Н20	119.7	
С10—С9—Н9В	108.5	С15—С20—Н20	119.7	
Н9А—С9—Н9В	107.5	O6-C21-H21A	109.5	
C11—C10—C13	102.73 (13)	O6-C21-H21B	109.5	
C11—C10—C9	113.07 (13)	H21A—C21—H21B	109.5	
C13—C10—C9	116.48 (13)	O6—C21—H21C	109.5	
C11—C10—H10	108.1	H21A—C21—H21C	109.5	
C13-C10-H10	108.1	H21B—C21—H21C	109.5	
C6—C1—C2—C3	1.7 (2)	O3—C12—C13—C14	137.62 (14)	
C9—C1—C2—C3	-176.52 (14)	O4—C12—C13—C10	-167.32 (18)	
C1—C2—C3—C4	0.2 (2)	O3—C12—C13—C10	12.54 (18)	
C7—O1—C4—C3	-11.9 (2)	C11—C10—C13—C12	-21.56 (16)	
C7—O1—C4—C5	167.03 (16)	C9—C10—C13—C12	-145.71 (14)	
C2—C3—C4—O1	177.18 (15)	C11-C10-C13-C14	-142.41 (14)	
C2—C3—C4—C5	-1.7 (2)	C9—C10—C13—C14	93.44 (17)	
C8—O2—C5—C6	1.7 (2)	C12-C13-C14-C15	-174.92 (14)	
C8—O2—C5—C4	-176.99 (13)	C10-C13-C14-C15	-57.32 (19)	
O1—C4—C5—O2	1.0 (2)	C13-C14-C15-C16	-85.45 (19)	
C3—C4—C5—O2	179.99 (14)	C13-C14-C15-C20	93.00 (17)	
O1—C4—C5—C6	-177.79 (13)	C20-C15-C16-C17	-1.9 (2)	
C3—C4—C5—C6	1.2 (2)	C14-C15-C16-C17	176.52 (14)	
O2-C5-C6-C1	-177.86 (14)	C15—C16—C17—C18	-0.4 (2)	
C4—C5—C6—C1	0.8 (2)	C16—C17—C18—O5	-179.14 (13)	
C2-C1-C6-C5	-2.2 (2)	C16—C17—C18—C19	2.5 (2)	
C9—C1—C6—C5	176.05 (13)	C21—O6—C19—C20	-3.5 (2)	
C2—C1—C9—C10	89.17 (18)	C21—O6—C19—C18	176.67 (15)	
C6—C1—C9—C10	-89.02 (18)	O5-C18-C19-O6	-0.7 (2)	
C1—C9—C10—C11	-63.25 (19)	C17—C18—C19—O6	177.63 (13)	
C1—C9—C10—C13	55.42 (19)	O5-C18-C19-C20	179.43 (14)	
C12—O3—C11—C10	-17.30 (19)	C17—C18—C19—C20	-2.2 (2)	
C13—C10—C11—O3	23.87 (17)	O6-C19-C20-C15	-179.96 (14)	
C9—C10—C11—O3	150.24 (14)	C18—C19—C20—C15	-0.1 (2)	
C11—O3—C12—O4	-177.32 (17)	C16-C15-C20-C19	2.2 (2)	
C11—O3—C12—C13	2.8 (2)	C14—C15—C20—C19	-176.31 (14)	
O4—C12—C13—C14	-42.2 (2)			
Hydrogen-bond geometry $(Å, \circ)$				

D—H···A D—H H···A D···A D—H···A

O5—H5…O2 ⁱ	0.90 (2)	2.04 (2)	2.8280 (17)	146 (2)
O5—H5…O6	0.90 (2)	2.22 (2)	2.6799 (18)	111.7 (17)
O5—H5…O1 ⁱ	0.90 (2)	2.58 (2)	3.2406 (18)	130.8 (16)
C3—H3···O5 ⁱⁱ	0.95	2.34	3.278 (2)	168
C14—H14A····O4 ⁱⁱⁱ	0.99	2.86	3.687 (2)	142
C14—H14B····O5 ^{iv}	0.99	2.42	3.373 (2)	162
C20—H20…O4 ⁱⁱⁱ	0.95	2.53	3.446 (2)	162
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+1$, y	+1/2, -z+3/2; (iii) $x+1/2, -z+3/2;$	-y+3/2, -z+2; (iv) $x-$	1/2, -y+1/2, -z+2.	

sup-7

